Partial order reductions using
compositional confluence detection

Fredéric Lang
Radu Mateescu

INRIA Rhone-Alpes /7 VASY
http://www.Inrialpes.fr/vasy

%l INRIA

Context (1/2)

e Explicit state verification of concurrent systems
- Parallel composition of asynchronous processes
- Synchronisation or interleaving of communication actions
- Systematic exploration of the behaviour graph

e Several techniques to palliate state explosion

- Compositional verification : apply property preserving
reductions to the graphs of the composed processes

- Partial order reductions : avoid interleavings that are
useless with respect to the properties under verification

- On-the-fly verification : only explore states when
necessary to evaluate the property under verification

_ A o

Context (2/2)

e Those techniques can be combined
- CADP toolbox (http://www.inrialpes.fr/vasy/cadp)
- Open/Caesar environment

- Exp.Open tool

e This talk presents two variants of a new partial
order reduction technique, one preserving
deadlocks and one preserving branching
equivalence, based on a compositional analysis
of the composed processes

Partial order reductions
persistent sets family [Godefroid, Valmari, Peled]

e Roots In communicating automata theory

e Operations are dependent if there can be some
state in which they do not commute

e Find a subset S of the operations enabled in the
current state such that every operation ¢ S and
dependent on an operation € S cannot be enabled
before an operation € S is fired

e Deadlocks are preserved If operations ¢ S are
postponed

e Visible traces or branching equivalence can be
preserved under additional conditions

W VASY 4

Partial order reductions
t-confluence family [Groote, van de Pol, Ying]

e Roots In process algebra theory

e Find invisible (1) transitions commuting with all
other transitions

e Branching equivalence is preserved If transitions in
choice with t-confluent transitions are postponed

e Symbolic and/or (on-the-fly) explicit state detection
tools exist

This talk combines persistent sets and z-confluence

—_ A o

The network model (1/3)

e The model we use to represent concurrent systems
e Each process is described by a graph

e Each transition is labeled by a visible communication
action or an invisible action 7

rcvl rcv2
T sndl snd2
snd2 sndl

rcv2 rcvl

A o

e Example: a bag

The network model (2/3)

e Graphs are composed using synchronization rules
e Example: Network N

sndl

Rules: (e, rcvl, o) > rcvl (sndl, sndl, o) > 1
(e, rcv2, o) —>rcv2 (e, snd2, snd2) —» 1

Z L

The network model (3/3)

e Network semantics = product of composed graphs
e Example: semantics of N (previous slide)

e Reasonable restrictions on t actions guarantee that

branching equivalence is a congruence for networks
(no synchronisation, no cut, and no renaming of t actions)

_ A e

Persistent sets for networks

e Two operations are dependent If there is some
state in which they may not commute

- For networks, operation = synchronization rule

- Two rules (a;, ..., a,) »aand (b, ..., b,) — b are
dependent if (die 1..n)a,ze A b, %o

- Indeed, in this case and only in this case, there can be a
state where one rule disables the other

e Persistent set construction for networks is described
In [Lang-05]

—_ A o

t-confluence

e Definition of partial strong =confluence by Groote
& van de Pol (t-confluence for short in this talk)

e A transition is zconfluent (=—) if:

o] SR G CTITT.
¢ 7

whereb =1

e t-confluent transitions can be prioritized as long as
they do not close a circuit

e This preserves branching equivalence

A e

t-confluence for networks

e t-confluence can be eliminated in composed graphs

- Correct because t-confluence elimination preserves
branching equivalence

- But useless If graphs are minimized for branching

e 1-confluence can be eliminated on-the-fly while
computing the product graph
- Efficient tools exist (EXP.OPEN/REDUCTOR tools of CADP)

- But cost increases non-linearly with the size of the
product graph

—_ A =

Compositional confluence detection

We present Compositional Confluence Detection (CCD)

e CCD removes some t-confluent transitions that:

- Are obtained by synchronisation, then hiding, of
locally visible actions and thus cannot be removed
beforehand in the composed graphs

- Are not detected by persistent set methods

e CCD is less resource consuming than on-the-fly
t-confluence elimination in the product graph

e CCD can be combined with compositional verification
and persistent set methods

—_ A =

Confluence

e CCD requires a more general notion of confluence

- Generalizes t-confluence for visible actions

- Is analogous to "confluent processes” (Milner) and lifted to
transitions as Groote & van de Pol's t-confluence

- Has a strict and a non-strict variants
.- . - - ¢ .
e A transition is [strictly] confluent (=) if:

non-strict confluence

VASY 13

Strict confluence theorem

e Theorem: Prioritization of strictly confluent
transitions preserves deadlocks

e Formal proof avallable In INRIA RR-7078
e Example:

“«@ <«— deadlock

/

VASY 14

Compositional confluence theorem

e Theorem: Transitions obtained by synchronisation of
[strictly] confluent transitions are [strictly] confluent

e Formal proof available in INRIA RR-7078

e Corollaries:

- Prioritizing transitions obtained by synchronization of
strictly confluent transitions preserves deadlocks

- Prioritizing t-transitions obtained by synchronization of
confluent transitions preserves branching equivalence, as
long as they do not close a circuit

—_ A =

Example (172)

(sndl, sndl,) — 1 Vyields a t-confluent transition in
INIt state as both sndl-transitions are confluent

—_ Z =

Example (2/2)

e S ={(sndl, sndl,) — t} Is not persistent In init state

- S persistent If each operation ¢ S dependent on a operation
e S cannot be enabled before an operation € S is fired

- ((e, snd2, snd2), 1) ¢ S dependent on ((sndl, sndl, e), 1) € S
- Both rules are enabled in init state

e Same for S = { (e, snd2, snd2) — 7}
/ — T

Confluence detection

e Encode the problem as the resolution of a maximal
fixed point Boolean Equation System (BES):

{Xslasz v/\sl %b S3(

1VS, =, 8, Xgaa Vv (D=T A VS, =S, true)

) } non-strict confluence

* Xy a0 true Iff s, —, s, confluent

e BES resolution carried out using a global linear-time
algorithm [Andersen-94, Mateescu-00]

W VASY 18

The EXP.OPEN 2.0 tool of CADP

EXP.OPEN

| v
C compiler} -------- >[p?géfgrtn}.

e New option -confluence

- Combined with persistent set methods
(-deadpreserving, -weaktrace, or -branching options)

- Search [strictly] confluent transitions in composed graphs
- Use confluence information to prioritize transitions

Z B

Experimental results
branching (1/2)

e CADP demos available at
http://www.inrialpes.fr/vasy/cadp/demos
e ODP (Open Distributed Processing) trader (demo 37)
- 22 K st. / 158 K trans. using compositional verification
- no reduction using persistent sets
- 0,5Kst. /2,8 K trans. using CCD

e Asynchronous circuit for Data Encryption (demo 38)
- 1,4 Kst. / 3,5 K trans. using compositional verification
- no reduction using persistent sets
- 0,3 Kst. /0,6 K trans. using CCD

—_ A B

Experimental results
branching (2/2)

e Examples provided by ST Microelectronics
(critical part of a multiprocessor system on chip)
e ST example 1:
- 5,4 M st. /37,6 M trans. using compositional verification
- no reduction using persistent sets
- 5,1 Mst. /24,7 M trans. using persistent sets + CCD

e ST example 2:
- 789 M st. / 8104 M trans. using compositional verification
- no reduction using persistent sets
- 710 M st. / 6143 M trans. using persistent sets + CCD

- W TTVASY 2t

Experimental results
deadlocks

e ODP trader
- 22 K st. / 158 K trans. using compositional verification
- no reduction using persistent sets
- 0,08 K st. /0,1 K trans. using persistent sets + CCD

e ST example 1:
- 5,4 M st. /37,6 M trans. using compositional verification
- 5,2 M st. / 34,2 M trans. using persistent sets
- 0,39 M st. / 1,3 M trans. using persistent sets + CCD

—_ Z o

Conclusion

e CCD (Compositional Confluence Detection) Is a new
partial order reduction method

- It works compositionally by searching confluence in the
composed graphs to detect confluence in the product

- It can improve the reductions obtained using
persistent set methods

e CADP (http://www.inrialpes.fr/vasy/cadp) supports
CCD combined with persistent sets, on-the fly
verification and compositional verification

e |[n the future, CCD could also be combined with
distributed graph generation

Z s

